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Malfunctions or critical fatigue problems often occur in mistuned periodic structural systems
since their vibration responses may become much larger than those of perfectly tuned periodic
systems. These are called vibration localization phenomena and it is of great importance to
accurately predict the localization phenomena for safe and reliable designs of the periodic
structural systems. In this study, a simple discrefe system which represents periodic structural
systems is employed to analyze the vibration localization phenomena. The statistical effects of
mistuning, stiffness coupling, and damping on the vibration localization phenomena are
investigated through Monte Carlo simulation. It is found that the probability of vibration
localization was significantly influenced by the statistical properties except the standard

deviation of coupling stiffness.
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1. Introduction

Periodic structural systems, in which identical
subcomponents are repeated, can be found in
several engineering examples such as turbine and
helicopter blades. Periodic structures, however,
are not perfectly periodic since there always exist
manufacturing tolerances, disorders of material
properties, and operational wear in their sub-
components. Such a structural system which has
at least one slightly different subcomponent is
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called a mistuned (or disordered) periodic sys-
tem. The forced vibration response of some sub-
component of a mistuned periodic system be-
comes often much larger than that of a perfectly
tuned periodic system. Thus, the vibration energy
tends to concentrate on a few subcomponents of
the mistuned periodic system. These phenomena,
which are called the vibration localization phe-
nomena, often cause unexpected premature fai-
lures in the periodic structural systems. Therefore,
the effect of mistuning on the vibration locali-
zation phenomena has been investigated by se-
veral researchers.

Since the pioneering work of Anderson (1958)
on localization in disordered periodic systems in
solid state physics, the localization phenomena
have drawn attention from many researchers in
mechanical engineering. Ewins (1969, 1970, 1973,
1976) showed that the maximal forced response
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increases with increasing mistuning up to certain
level, However, further increase of mistuning re-
sults in Jower forced response, Hodges (1982)
was the [irst one to rccognize the relevance of
localization theory to dynamical behavior of peri-
odic structures in structural dynamics. Bendiksen
(1984, 1987) investigated mode localization of
mistuned turbo-machinery rotors using disorder-
ed chain of coupled pendulum. Pierre et al
{19874, 1987b) investigated mode localization of
disordered mulli-span beams and explained mode
localization by perturbation method using disor-
dered chain of coupled pendulum, Wel et al
{1988), Castanier et al.(1997) and Choi (2003)
also introduced inteptional mistuning into the
design of bladed disks in order to reduce the
maximal forced response. Recently, Yoo et al
{2003} investigated the localization phenomena
by analyzing the forced vibration responses. They
found a certain relation berween mistuning and
stiffness coupling which causcs strong localiza-
tion. The effect of damping on the localization
was also investigated. In the literature so far
mentioned, however, the system parameters were
assumed 1o possess detcrministic properties rather
than swatistical properties. Only a few authors
(Sogliero, 1980 ; Sinha, 1986) have acknowl-
edged the need to employ statistical approaches to
investigate the localization phenemena so far.

In this paper, the statistical effects of mistun-
ing, stiffness coupling, and damping on the vi-
bration {ocalization phenomena arc investigated.
A simple coupled pendulum is empleyed to in-
vestigate the localization phenomena in mistuned
periodic systems. Monte Carlo simulation method
(Rubinstein, 1981}, which is a powerlul tool
bused on the thcory of prohahility (Papoulis,
1984}, is employed lo obtain the numerical re-

sults.

2. Simplified Modeling for Coupled
Periodic Structural Systems

Periodic structural systems have repeated sub-
components that have identical structural topolo-
gy including geometry, coupling stiffuess, and

damping. The mistuning of a periedic structural
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Fig. 1 Multiple coupled pendulum system

system results from irregularities such as length
difference, Figure | shows a planar coupled pen-
dulum  system. FEach pendulum has torsional
spring of modulus & and two wanslational
springs of medulus %;,. The distance from hinge
point to translational spring is ¢ The notation
o; denotes a length difference which represents
the mistuning of the 7-th pendulum. Even though
damping symbols do not appear in Fig. 1, linear
viscous proportional damping lorce {with damp-
ing constant ¢} is assumed o act on cach pendu-
lum mass. IF each pendulum mass is excited by
random exciration force f'. the equations of mo-

tion of the {-th pendulum ure derived as follows -
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where /[ rcpresents a nominal length of pendu-
lums. Assuming the same propertics of mass m,
damping coustant ¢, torsional spring modulus
kr, translational spring modulus %, and external
force f, Eq. (1) can he written as follows :
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To obtain more general and useful conclusions
from the equations of motion, dimensionless para-
meters and a dimensionless variable wre delined

as follows :
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where @, 8, ¢, 7, and rrepresent length mistun-
ing, coupling stiffness between subcomponents,
damping, cxternal force, and & dimensionless
time, respectively. Employing these dimensionless
parameters and variable, Eq. (2) can be rewritten

RE
(I'Jrau)zfj%-Zé'(l+af)20i" pa!
+1428) ¢F— g =y (1 +a) (4)
(i=:1,2, -, n)

where a dot over a symbol now represents the
differentiation of the symbol with respect to di-
mensionless time variable 7. Therefore, the equa-
tions of motion can be written as follows:
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Taking Fourier transformation ot Eq. (5) vields
the following matrix equation.

— LM |25l M)+ K1) ()= F)

where { & } and ¥ are the Fourier transformations
of {#} and v, respectively. Now, frem Eq. (7)),
one can obtain {8} which represcnts the fre-
guency respounse of the pendulum system. The
[requency response amplitude of the /~th pendu-
lum is | 8:] (whose maximum will be denoted as
& in the next section). Substituting ﬁi:X,--i-jY,-
into g (7),
derived.

the following equation can be

- [M]+[K] -2{0'M] (X0 _-1{F}

o) o sialin) 7o |
The excilation force is assumed to have white
random property in this study. So, a constant
value for ¥ is employed to obtain X; and Y; [rom
Eq. (8). However, ¥ may be given differently il it
is known to the analyzcr,

in the next section, the vibration localization
phenomena occurred in the mistuned pendulum
system will be investigated by employing the
Monte Carle simulation method. The input ran-
dom parameters in this method are the mistuning
parameter ¢, the coupling stiffness parameter 5
and the damping parameter {. The output ran-
dom parameter is the largest frequency response
amplitude £, that is the maximum of [ @;] The
Monte Carlo simulation can be described as fol-
lows. Normally distributed patterns for length
diserder, coupling stiffness, and damping are ob-
tained by using & random number generator. A set
of mistuned systems determined by the patterns is
analyzed threugh the equations mentioned above.
The largest frequency response amplitude consti-
tutes one sample and i3 stored in a vector. This
process is repeated until some convergence con-
dition is met. Post-processing of the sample vee-
tor results in an approximation of the response
statistics. The effects of the statistical properties of
the three dimensionless parameters on the locali-
zation phenomena will be investigated through
this procedure.

3, Numerical Results and Discussion

The simplest case of the coupled pendulum
system, that is the case of #=2, is investigated in
this study. First, let’s consider cases in which all
the system parameters {(@’s, £, and ) are as-
sumed Lo be deterministic rather than statistical.
To obtain the numerical results, the following
three scts {for a1, ae, and ) are emplayed. The
three sets are (0.0, 0.0, 0.002). (0.0, 0.024, 0.002},
and (0.0, 0.024, 0.012) and { is always equal
to 0.005. Especially, the third set is the system
TESPONSE

parameters at which the maximum

appears. 11 is identical with that obtained by using
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the modeling method of Yoo et al.{2003). Nu-
merical results for the three sets of parameters are
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Fig. 2

Frequency response curves ol the three

determinisiic cases

shown in Fig. 2. Figure 2(a) shows the results
of the first case. Twe pendulums are identical in
this case so that their frequency response curves
are identical, too. Figures 2(b) and (¢} show the
results of the sccond and the third cases. As
shown in the figures, the length mistuning (the
difference between e and @s) causes the differ-
ences of {requency responsc curves. Comparing
the two vesults, one can realize that the weak
coupling stiffness (#=0.002) results in smaller
difference. Therefore, the first parameter set (0.0,
0.0, 0.002) can be empioyed to represent a tuncd
system while the third set (0.0, 0.024, 0.012) can
be employed o represent a mistuned systerm. The
highest peak of the frequency response curve of
the mistuned system divided by that of the tuned
system, ka/ Krunew. 15 employed to describe the vi-
bration localization criterion in this study. Fer
instance, one may employ &/ Kumea > 1.1 45 a
vibration localization criterion, In other words,
yibration localization presumes to occur if s/
Kemes 18 greater than 1.1

To investigale the effecis of the statistical prop-
erties of the length mistuning parameters {g@;s)
on the vibrution localization phenomena, Monte
Carlo simulation was performed. [First. to verily
the validity of Montc Carlo simulation, the con-
vergence test was made. Table I shows the con-
vergence trends of the mecan and the standard
deviation of ks/ Kumee. To oblain the results in
Table 1, Ko =0. E{a) =0.024 and £=0.002
arc employed for the tuned case and If (@} =0,
It (@) =0.024 and £=0.012 arc employed for the
mistuned case. For the two cases, the standard
deviations {of @’s) are 0.01 and ¢ is equal to
0.005. The probability (thal #/kmmes 15 greater
than [.1} is also given in Table I. It is shown that
the simulation results converge rapidly as the
number of sampling data increascs. So ons may
conclude that the Monte Carle simulations pro-
vide reasonable convergenl numerical results as
the number of sampling data increases. To save
computation time while maintaining simulation
accuracy, hereinafter, ten thousand sampling data
arc employed to obtain the numerical results.

Figure 3 shows (ie probability (that i/ fumea
is greater than 1.1 and 1.05) versus the standard
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deviations of ¢ and @ for the tuned case. The
darker areas indicate relatively higher probabil-
ity. Even if this system is a tuned system (that is
designed intentionally to avoid vibration locali-
zation), relatively higher probability of vibration
localization still exists in some specific ranges
of standard deviations of & and e As can be
observed from Fig. 3{a}, there exists a quarter
circle band in which the probability of vibration
localization is relatively higher than the rest area.
So one may reach a useful conclusion for prac-
tical designs. To avoid higher probability of vi-
bration localization {(that z/ Lumeq 15 greater than
1.1}, the root of the square sum of the standard
deviations should avoid the range that is ap-
proximately 0.00SjéméO.UIE. Figure 3
(b) also shows that the range of relatively higher
probability expands significantly as the locali-
zation criterion is lowered from s/ Kewmea <<1.1 to
4/ Krunea <. 1,05, In this case, to avoid the vibration
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localization (that x2/#sumes 18 greater than 1.05),
one should significantly reduce the standard
deviations of ¢ and a2 which are directly related
to the manufacturing tolerances. Of couse, that
will naturally increase the manufacturing cost.

Figure 4 shows the results of the mistuned case
in which E (@) =0, E (@) =0.024 and f=0.012.
Different from the previous results of the tuned
case, relatively higher probability range is con-
centrated near the origin. To ensure the higher
probability of the vibration lecalization (that #»/
Kumea, 18 greater than 1.1), the root of the square
sum of the standard deviations should be ap-
proximately less than (L015. Figure 4(b) also
shows that the range of high probability enly
slightly expands as the localization criterion is
lowered from 1.1 to 1.05.

Figure 5 shows the probability of Kz/limngd
(that is greater than 1.1 and 1.05} versus the same
standard deviation of @/s5 and the mean of &

Table 1 Convergence of the response statistics as the number of sampling data increases

Number of Mean Standard deviation Probability
Samples turted mistuned tuned mistuned tuned mistutted
10 0.9094 1.1794 0.1266 0.0155 0.2000 1.0000
100 0.9820 1.1616 0.1404 0.0527 0.3200 0.9000
Loo0 0.9699 1.1546 0.1335 0.0825 0.2740 0.8980
10000 0.9746 1.1573 0.1314 0.0745 0.2737 0.9008
100000 0.9767 1.1575 0.1316 0.0728 02780 0,8989
wtuned case  : E{m) =0, E{a) =0, 6.,=0.01, §=0.002, £=0.005
s mistuned case: E{m}=0, E{a) =0.024, g,,=0.01, 5=0.012, {=0.003
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(a) Casec of P xy/ Kranes >1.1] (b) Case of P xe/ Keunea > 1.05]

Fig. 3 Probability of #/ #ames > that Is larger than 1.1 and 1.05 versus the standard deviations of & and a for

the tuned case
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(when £=0.002). It can be observed that vibra-
tion localization only occurs in a small specific
range of standard deviation and mean values. As
the criterien is lowered, however, the range ex-
pands significantly. Figure 6 shows the probabil-
ity of #a/kwnea (that is greater than 1.1 and 1.05)
versus the same standard deviation of @s and
the mean of @ (when F=0.012}. These results
{comparing to those of Figure 5) indicate that the
range of vibration localization expands signi-
ficantly with a specific value of 5.

Figure 7 shows the probability of vibration
localization {(#z/ Kuumea 15 greater than 1.1} versus
the standard deviation of @/s and the mean of 8
for the tuned and mistuned cases. For the tuned

ElaJ=E[]=00 . o, =0001 , ;

7T

002 003 00 00%
a

-

oo o0

(a) The tuned case

case (as shown in Fig. 7(a}), the probability
increases as the mean of 8 increases in proportion
to the standard deviation of @;’s. Note that the
probability reaches almost 30 percent in the pro-
portienal region. Therefore, to avoid the vibra-
tion localization, the standard deviation of @'s
and the mean of £ should be located inside the
uppet triangular region near the vertical axis. As
the standard deviation of @,’s increases in this
region, the mean of 8 should be alse increased to
avoid the vibration localization. For the mistuned
case {as shown in Fig. 7(5)}, the probability of
vibration localization {#a/#unes is greater than
5.1} is almost 100 percent in the region near the
vertical axis. The figure also shows that the mean
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(b) The mistuned case

Fig. 7 Probability of o/ ke that is larger than 1.1 versus the standard deviation of @/s and the mean of 8

for the tuned and the mistuned cases
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Fig. 8 Probability of #/fmunes that is larger than 1.1 versus the standard deviation of s and the standard
deviation of 5 for the tuned and the mistuned cases
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of A is desired to be decreased to guarantee the
vibration localization. However, if the mean of £
is decreased excessively (approximately less than
0.005), the probability decreases rapidly.

When the mean value is less than three times
the standard deviation, the probability to generate
a positive sample is less than 99.73% and a few
negative samples can be generated by randem
number generator. Since negative coupling stiff-
ness provides meaningless results, the region (in
which negative coupling stiffness can be generat-
ed) is removed from Fig. 7 with hatching.

Figure & shows the probability of vibration
localization (& Kwunea is greater than 1.1) versus
the standard deviation of a;’s and the standard
deviation of 8 for the tuned and mistuned cases.
The figure shows that the probability is hardly
influenced by the standard deviation of £ in both
cases. The standard deviation of ;s should not
exceed 0.003 to avoid the vibration localization
for the tuned case {as shown in Fig. §(a)} while
it should not exceed 0.01 to guarantee the vibra-
tion localization for the mistuned case {as shown
in Fig. 8(b)). Comparing the two numbers, one
can conclude that it is more difficult to avoid the
vibration localization than to puarantee the vi-
bration localization.

4, Conclusions

A simple discrete system which represents
periodic structural systems was employed to in-
vestigate the vibration localization phenomena
through a statistical method. The effects of statis-
tical properties of the length mistuning, the cou-
pling stiffness and the damping on the probability
of vibration localization were examined through
Monte Carlo simulation. Tt was found that the
probability of vibration localization was signi-
ficantly influenced by the statistical properties
except the standard deviation of coupling stiff-
ness. In conclusion, the vibration localization
could be either avoided or guaranteed, for the
design of periodic structural systems, by con-
trolling the statistical properties of the length
mistuning, the coupling stiffness, and the damp-
ing.

Sang Ha Shin, Se Jung Lee and Hong Hee Yoo

Acknowledgments

This research was supported by Innovative De-
sign Optimization Technology Engineering Re-
search Center through research fund, for which
authors are grateful.

References

Anderson, P. W., 1958, “Absence of Diffusion
in Certain Random Lattices,” Physical Review,
Vol. 109, No. 5, pp. 1492~1505.

Bendiksen, O. 0., 1984, “Flutter of Mistuned
Turbomachinery Rotors,” Journal of Engineering
Jor Gas Turbines and Power, Vol. 106, No. |,
pp. 25~33.

Bendiksen, O. 0., 1987, “Mode Localization
Phenomena in Large Space Structure,” A74A
Journal, Vol. 25 No. 9, pp. 1241 ~1248.

Castanier, P. and Pierre, C., 1997, “Considera-
tion on the Benefits of Intentional Blade Mis-
tuning for the Ferced Response of Turbomac-
hinery Rotors,” Analysis and Design Issues for
Modern Aerospace Vehicles, Vol. 55, pp. 419~
425,

Choi, B. K., 2003, “Pattern Optimization of
Intentional Blade Mistuning for the Reduction of
the Forced Response Using Genetic Algorithm,”
KSME International Journal, Vol.17, No.7,
pp. 966~977.

Ewins, D.J., 1969, “The Effect of Detuning
upon the Forced Vibrations of Bladed Disks,”
Journal of Sound and Vibration, Vol.9, No. 1,
pp. 65~79.

Ewins, D.J., 1970, “A Study of Resonance
Coincidence in Bladed Disks,” Journal of Mec-
hanical Engineering Science, Vol. 12, pp. 305~
312.

Ewins, D.J., 1973, “Vibration Characteris-
tics of Bladed Disc Assemblies,” Jouwrnal of
Mechanical Engineering Science, Vol. 15, No. 3,
pp. [65~186.

Ewins, D. )., 1976, “Vibration Modes of Mis-
tuned Bladed Disks,” ASME Journal of Engi-
neering for Power, Vol. 98, No. 7, pp. 349—~1355.

Hodges, C. H.,, 1982, “Confinement of Vibra-



Statistical Approach to Analyze Vibration Localization Phenomena in Periodic Structural Systems

tion By Structural Irregularity,” Journal of
Sound and Vibration, Vol. 82 No. 3, pp. 411~
424,

Papoulis, A., 1984, Probability, Random Vari-
ables, and Stochastic Process, McGraw-Hill.

Pierre, C. and Dowell, E. H., 1987, “Locali-
zation of Vibration by Structural Irregularity,”
Journal of Sound and Vibration, Vol. 114, Na. 3,
pp. 549~ 564.

Pierre, C., Tang, D.M. and Dowell, E. H,
1987, “Localized Vibrations of Disordered Mul-
tispan Beams: Theory and Experiment,” AIAA
Journal, Vol. 25, No. 9, pp. 1249~1257.

Rubinstein, R, Y., 1981, Simuiation and the
Monte Carlo Method, Jon Wiley and Sons.

Sinha, A., 1986, “Calculating the Statistics of
Forced Response of a Mistuned Bladed Disk

1413

Assembly,” AIAA Journal,
pp. 1797~1801.

Sogliero, G. and Srinivasan, A. V., 1980, “Fa-
tigue Life Estimates of Mistuned Blades via a
Stochastic Approach,” AIAA4 Journal, Vol. 18,
No. 3, pp. 318~323.

Wei, S. T., Pierre, C., 1988, “Localization Phe-
nomena in Mistuned Assemblies with Cyelic
Symmetry [Part 1] Free Vibrations, [Part II]
Forced Vibrations,” Journal of Vibration, Acous-
tics, Stress, and Reliability in Design, Vol. 110,
pp. 429~449.

Yoo, H. H., Kim, J. Y. and Inman, D. J.,, 2003,
“Vibration Localization of Simplified Mistuned
Cyclic Structures Undertaking External Har-
monic Force,” Journal of Sound and Vibration,
Vol. 26!, No. 5, pp. 859~870.

Vol. 24, No. 11,



